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ABSTRACT
In this paper we propose the general scheme of defining hy-
brid feature selection algorithms based on standard sequen-
tial search with the aim to improve feature selection per-
formance, especially on high-dimensional or large-sample
data. We show experimentally that “hybridization” has not
only the potential to dramatically reduce FS search time,
but in some cases also to actually improve classifier gener-
alization, i.e., its classification performance on previously
unknown data.
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1 Introduction

A broad class of decision-making problems can be solved
by learning approach. This can be a feasible alternative
when neither an analytical solution exists nor the mathe-
matical model can be constructed. In these cases the re-
quired knowledge can be gained from the past data which
form the so-called learning or training set. Then the for-
mal apparatus of statistical pattern recognition can be used
to learn the decision-making. The first and essential step
of statistical pattern recognition is to solve the problem of
feature selection (FS) or more generally dimensionality re-
duction (DR). The problem of effective feature selection
– especially in case of high-dimensional and large-sample
problems – will be of primary focus in this paper.

1.1 Feature Subset Selection

Given a set Y of |Y| features, let us denote Xd the set of
all possible subsets of size d, where d represents the de-
sired number of features. Let J(X) be a criterion function
that evaluates feature subset X ∈ Xd. Without any loss of
generality, let us consider a higher value of J to indicate
a better feature subset. Then the feature selection problem
can be formulated as follows: Find the subset X̃d for which

J(X̃d) = max
X∈Xd

J(X). (1)

Assuming that a suitable criterion function has been chosen
to evaluate the effectiveness of feature subsets, feature se-
lection is reduced to a search problem that detects an opti-
mal feature subset based on the selected measure. Note that
the choice of d may be a complex issue depending on prob-
lem characteristics, unless the d value can be optimized as
part of the search process.

An overview of various aspects of feature selection
can be found in [1], [2], [3], [4]. Many existing feature
selection algorithms designed with different evaluation cri-
teria can be categorized as filter [5], [6] wrapper [7], hy-
brid [8], [9], [10] or embedded [11], [12], [13] or [14],
[15]. Filter methods are based on performance evaluation
functions calculated directly from the training data such as
distance, information, dependency, and consistency, [16, 1]
and select features subsets without involving any learning
algorithm. Wrapper methods require one predetermined
learning algorithm and use its estimated performance as
the evaluation criterion. They attempt to find features bet-
ter suited to the learning algorithm aiming to improve per-
formance. Generally, the wrapper method achieves better
performance than the filter method, but tends to be more
computationally expensive than the filter approach. Also,
the wrappers yield feature subsets optimized for the given
learning algorithm only - the same subset may thus be bad
in another context.

In the following we will investigate the hybrid ap-
proach to FS that combines the advantages of filter and
wrapper algorithms to achieve best possible performance
with a particular learning algorithm with the time complex-
ity comparable to that of the filter algorithms. In Section 2
an overview of sequential search FS methods is given. We
distinguish methods that require the subset size to be speci-
fied by user (Sect. 2.1 to 2.6) from methods capable of sub-
set size optimization (Sect. 2.7). The general scheme of hy-
bridization is introduced in Sect. 3. Section 4 describes the
performed experiments and Sect. 5 summarizes and con-
cludes the paper.

2 Sub-Optimal Search Methods

Provided a suitable FS criterion function (cf. [16]) is avail-
able, the only tool needed is the search algorithm that gen-
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erates a sequence of subsets to be tested. Despite the
advances in optimal search ([17], [18]), for larger than
moderate-sized problems we have to resort to sub-optimal
methods. Very large number of various methods exists.
The FS framework includes approaches that take use of
evolutionary (genetic) algorithms ([19]), tabu search ([20]),
or ant colony ([21]). In the following we present a basic
overview over several tools that are useful for problems of
varying complexity, based mostly on the idea of sequential
search (Section 2.2 [16]). Finally, we show a general way
of defining hybrid versions of sequential FS algorithms.

An integral part of any FS process is the decision
about the number of features to be selected. Determin-
ing the correct subspace dimensionality is a difficult prob-
lem beyond the scope of this chapter. Nevertheless, in the
following we will distinguish two types of FS methods:
d-parametrized and d-optimizing. Most of the available
methods are d-parametrized, i.e., they require the user to
decide what cardinality should the resulting feature subset
have. In Section 2.7 a d-optimizing procedure will be de-
scribed, that optimizes both the feature subset size and its
contents at once, provided the suitable criterion is available
(classifier accuracy in wrappers can be used while mono-
tonic probabilistic measures can not).

2.1 Best Individual Feature

The Best Individual Feature (BIF) approach is the simplest
approach to FS. Each feature is first evaluated individu-
ally using the chosen criterion. Subsets are then selected
simply by choosing the best individual features. This ap-
proach is the fastest but weakest option. It is often the
only applicable approach to FS in problems of very high di-
mensionality. BIF is standard in text categorization ([22],
[23]), genetics ([24], [25]) etc. BIF may be preferable in
other types of problems to overcome FS stability problems.
However, more advanced methods that take into account re-
lations among features are likely to produce better results.
Several of such methods are discussed in the following.

2.2 Sequential Search Framework

To simplify further discussion let us focus only on the fam-
ily of sequential search methods. Most of the known se-
quential FS algorithms share the same “core mechanism”
of adding and removing features to/from a current sub-
set. The respective algorithm steps can be described as
follows (for the sake of simplicity we consider only non-
generalized algorithms that process one feature at a time
only):

Definition 1 For a given current feature set Xd, let f+ be
the feature such that

f+ = arg max
f∈Y\Xd

J+(Xd, f) , (2)

where J+(Xd, f) denotes the criterion function used to
evaluate the subset obtained by adding f (f ∈ Y \ Xd)

to Xd. Then we shall say that ADD(Xd) is an operation of
adding feature f+ to the current set Xd to obtain set Xd+1

if

ADD(Xd) ≡ Xd∪{f+} = Xd+1, Xd, Xd+1 ⊂ Y. (3)

Definition 2 For a given current feature set Xd, let f− be
the feature such that

f− = arg max
f∈Xd

J−(Xd, f) , (4)

where J−(Xd, f) denotes the criterion function used to
evaluate the subset obtained by removing f (f ∈ Xd) from
Xd. Then we shall say that RMV (Xd) is an operation of
removing feature f− from the current set Xd to obtain set
Xd−1 if

RMV (Xd) ≡ Xd\{f−} = Xd−1, Xd, Xd−1 ⊂ Y. (5)

In order to simplify the notation for a repeated appli-
cation of FS operations we introduce the following useful
notation

Xd+2 = ADD(ADD(Xd)) = ADD2(Xd) , (6)

Xd−2 = RMV (RMV (Xd)) = RMV 2(Xd) ,

and more generally

Xd+δ = ADDδ(Xd), Xd−δ = RMV δ(Xd) . (7)

Note that in standard sequential FS methods J+(·) and
J−(·) stand for

J+(Xd, f) = J(Xd ∪ {f}), (8)

J−(Xd, f) = J(Xd \ {f}) ,

where J(·) is either a filter- or wrapper-based criterion
function ([26]) to be evaluated on the subspace defined by
the tested feature subset.

2.3 Simplest Sequential Selection

The basic feature selection approach is to build up a sub-
set of required number of features incrementally starting
with the empty set (bottom-up approach) or to start with
the complete set of features and remove redundant features
until d features retain (top-down approach). The simplest
(among recommendable choices) yet widely used sequen-
tial forward (or backward) selection methods, SFS and
SBS ([27], [16]), iteratively add (remove) one feature at
a time so as to maximize the intermediate criterion value
until the required dimensionality is achieved.

SFS (Sequential Forward Selection) yielding a subset of d
features:

1. Xd = ADDd(∅).
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As many other of the earlier sequential methods both SFS
and SBS suffer from the so-called nesting of feature subsets
which significantly deteriorates optimization ability. The
first attempt to overcome this problem was to employ ei-
ther the Plus-l-Take away-r (also known as (l, r)) or gen-
eralized (l, r) algorithms ([16]) which involve successive
augmentation and depletion process. The same idea in a
principally extended and refined form constitutes the basis
of Floating Search.

2.4 Sequential Floating Search

The Sequential Forward Floating Selection (SFFS) ([28])
procedure consists of applying after each forward step a
number of backward steps as long as the resulting subsets
are better than previously evaluated ones at that level. Con-
sequently, there are no backward steps at all if intermedi-
ate result at actual level (of corresponding dimensionality)
cannot be improved. The same applies for the backward
version of the procedure. Both algorithms allow a ’self-
controlled backtracking’ so they can eventually find good
solutions by adjusting the trade-off between forward and
backward steps dynamically. In a certain way, they com-
pute only what they need without any parameter setting.

SFFS (Sequential Forward Floating Selection) yielding a
subset of d features, with optional search-restricting param-
eter ∆ ∈ [0, D − d]:

1. Start with X0 = ∅, k = 0.

2. Xk+1 = ADD(Xk), k = k + 1.

3. Repeat Xk−1 = RMV (Xk), k = k − 1 as long as it
improves solutions already known for the lower k.

4. If k < d + ∆ go to step 2.

A detailed formal description of this now classical pro-
cedure can be found in [28]. The backward counterpart
to SFFS is the Sequential Backward Floating Selection
(SBFS). Its principle is analogous.

Floating search algorithms can be considered univer-
sal tools not only outperforming all predecessors, but also
keeping advantages not met by more sophisticated algo-
rithms. They find good solutions in all problem dimen-
sions in one run. The overall search speed is high enough
for most of practical problems. The idea of Floating search
has been futher developed in [29] and [30].

2.5 Oscillating Search

The more recent Oscillating Search (OS) ([31]) can be con-
sidered a “meta” procedure, that takes use of other feature
selection methods as sub-procedures in its own search. The
concept is highly flexible and enables modifications for dif-
ferent purposes. It has shown to be very powerful and ca-
pable of over-performing standard sequential procedures,

including Floating Search algorithms. Unlike other meth-
ods, the OS is based on repeated modification of the current
subset Xd of d features. In this sense the OS is independent
of the predominant search direction. This is achieved by
alternating so-called down- and up-swings. Both swings
attempt to improve the current set Xd by replacing some
of the features by better ones. The down-swing first re-
moves, then adds back, while the up-swing first adds, then
removes. Two successive opposite swings form an oscilla-
tion cycle. The OS can thus be looked upon as a controlled
sequence of oscillation cycles. The value of o denoted os-
cillation cycle depth determines the number of features to
be replaced in one swing. o is increased after unsuccessful
oscillation cycles and reset to 1 after each Xd improvement.
The algorithm terminates when o exceeds a user-specified
limit ∆. The course of Oscillating Search is illustrated in
comparison to SFS and SFFS in Fig. 1. Every OS algorithm

Figure 1. Graphs demonstrate the course of d-
parametrized search algorithms: a) Sequential Forward
Selection, b) Sequential Forward Floating Selection, c) Os-

requires some initial set of d features. The initial set may
be obtained randomly or in any other way, e.g., using some
of the traditional sequential selection procedures. Further-
more, almost any feature selection procedure can be used
in up- and down-swings to accomplish the replacements of
feature o-tuples.

OS (Oscillating Search) yielding a subset of d features,
with optional search-restricting parameter ∆ ≥ 1:

1. Start with initial set Xd of d features. Set cycle depth
to o = 1.

2. Let X↓d = ADDo(RMV o(Xd)).

3. If X↓d better than Xd, let Xd = X↓d, let o = 1 and go
to step 2.

4. Let X↑d = RMV o(ADDo(Xd)).

                              cillating Search.

3



5. If X↑d better than Xd, let Xd = X↑d, let o = 1 and go
to step 2.

6. If o < ∆ let o = o + 1 and go to step 2.

The generality of OS search concept allows to adjust the
search for better speed or better accuracy (by adjusting ∆,
redefining the initialization procedure or redefining ADD /
RMV). As opposed to all sequential search procedures, OS
does not waste time evaluating subsets of cardinalities too
different from the target one. This ”focus” improves the
OS ability to find good solutions for subsets of given car-
dinality. The fastest improvement of the target subset may
be expected in initial phases of the algorithm, because of
the low initial cycle depth. Later, when the current feature
subset evolves closer to optimum, low-depth cycles fail to
improve and therefore the algorithm broadens the search
(o = o + 1). Though this improves the chance to get closer
to the optimum, the trade-off between finding a better solu-
tion and computational time becomes more apparent. Con-
sequently, OS tends to improve the solution most consider-
ably during the fastest initial search stages. This behavior
is advantageous, because it gives the option of stopping the
search after a while without serious result-degrading con-
sequences. Let us summarize the key OS advantages:

• It may be looked upon as a universal tuning mech-
anism, being able to improve solutions obtained in
other way.

• The randomly initialized OS is very fast, in case of
very high-dimensional problems may become the only
applicable alternative to BIF. For example, in docu-
ment analysis ([32]) for search of the best 1000 words
out of a vocabulary of 10000 all other sequential meth-
ods prove to be too slow.

• Because the OS processes subsets of target cardinality
from the very beginning, it may find solutions even
in cases, where the sequential procedures fail due to
numerical problems.

• Because the solution improves gradually after each os-
cillation cycle, with the most notable improvements at
the beginning, it is possible to terminate the algorithm
prematurely after a specified amount of time to obtain
a usable solution. The OS is thus suitable for use in
real-time systems.

• In some cases the sequential search methods tend to
uniformly get caught in certain local extremes. Run-
ning the OS from several different random initial
points gives better chances to avoid that local extreme.

2.6 Experimental Comparison of d-Parametrized
Methods

The d-parametrized sub-optimal FS methods as discussed
in preceding sections 2.1 to 2.5 have been listed in the order

of their speed-vs-optimization performance characteristics.
The BIF is the fastest but worst performing method, OS of-
fers the strongest optimization ability at the cost of slowest
computation (although it can be adjusted differently). To
illustrate this behavior we compare the output of BIF, SFS,
SFFS and OS on a FS task in wrapper ([7]) setting.

The methods have been used to find best feature sub-
sets for each subset size d = 1, . . . , 34 on the ionosphere
data (34 dim., 2 classes: 225 and 126 samples) from the
UCI Repository ([33]). The dataset had been split to 80%
train and 20% test part. FS has been performed on the train-
ing part using 10-fold cross-validation, in which 3-Nearest
Neighbor classifier was used as FS criterion. BIF, SFS and
SFFS require no parameters, OS had been set to repeat each
search 15× from different random initial subsets of given
size, with ∆ = 15. This set-up is highly time consuming
but enables avoiding many local extremes that would not
be avoided by other algorithms.

Figure 2 shows the maximal criterion value obtained
by each method for each subset size. It can be seen that
the strongest optimizer in most of cases is OS, although
SFFS falls behind just negligibly. SFS optimization ability
is shown to be markedly lower, but still higher than that of
BIF.

Figure 2. Sub-optimal FS methods’ optimization perfor-

Figure 3 shows how the optimized feature subsets per-
form on independent test data. From this perspective the
differences between methods largely diminish. The effects
of feature over-selection (over-fitting) affect the strongest
optimizer – OS – the most. SFFS seems to be the most
reliable method in this respect. SFS yields the best per-
formance on independent data (to be denoted independent
performance from now on) in this example. Note that al-
though the highest optimized criterion values have been
achieved for subsets of roughly 6 features, the best indepen-
dent performance can be observed for subsets of roughly
7 to 13 features. The example thus illustrates well one
of the key problems in FS – the difficulty to find subsets
that generalize well, related to the problem of feature over-
selection ([34]).

The speed of each tested method decreases with its
complexity. BIF runs in linear time. Other methods run in
polynomial time. SFFS runs roughly 10× slower than SFS.

                      mance on 3-NN wrapper.
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OS in the slow test setting runs roughly 10 to 100× slower
than SFFS. The speed penalty of more complex methods
gets even more notable with increasing dimensionality and
sample size.

Figure 3. Sub-optimal FS methods’ performance verified

2.7 Dynamic Oscillating Search – The d-optimizing
Method

The idea of Oscillating Search (Sect. 2.5) has been further
extended in form of the Dynamic Oscillating Search (DOS)
([35]). The DOS algorithm can start from any initial sub-
set of features (including empty set). Similarly to OS it
repeatedly attempts to improve the current set by means of
repeating oscillation cycles. However, the current subset
size is allowed to change, whenever a new globally best so-
lution is found at any stage of the oscillation cycle. Unlike
other methods discussed in this chapter the DOS is thus a
d-optimizing procedure.

k+D

k-D

k

0 DOS Iteration

S
u

b
s
e

t 
s
iz

e

Figure 4. The DOS course of search

The course of Dynamic Oscillating Search is illus-
trated in Fig. 4. See Fig. 1 for comparison with OS, SFFS
and SFS. Similarly to OS the DOS terminates when the
current cycle depth exceeds a user-specified limit ∆. The
DOS also shares with OS the same advantages as listed in
Sect. 2.5: the ability to tune results obtained in a different
way, gradual result improvement, fastest improvement in
initial search stages, etc.

DOS (Dynamic Oscillating Search) yielding a subset of
optimized size k, with optional search-restricting param-
eter ∆ ≥ 1:

1. Start with Xk = ADD(ADD(∅)), k = 2. Set cycle
depth to δ = 1.

2. Compute ADDδ(RMV δ(Xt)); if any intermediate
subset Xi, i ∈ [k − δ, k] is found better than Xk,
let it become the new Xk with k = i, let δ = 1 and
restart step 2.

3. Compute RMV δ(ADDδ(Xt)); if any intermediate
subset Xj , j ∈ [k, k + δ] is found better than Xk,
let it become the new Xk with k = j, let δ = 1 and go
to step 2.

4. If δ < ∆ let δ = δ + 1 and go to step 2.

In the course of search the DOS generates a sequence of
solutions with ascending criterion values and, provided the
criterion value does not decrease, decreasing subset size.
The search time vs. closeness-to-optimum trade-off can
thus be handled by means of pre-mature search interrup-
tion. The number of criterion evaluations is in the O(n3)
order of magnitude. Nevertheless, the total search time de-
pends heavily on the chosen ∆ value, on particular data
and criterion settings, and on the unpredictable number of
oscillation cycle restarts that take place after each solution
improvement. Note: with monotonic criteria DOS yields
always the full feature set. This behavior makes it un-
usable with many probabilistic distance measures (Bhat-
tacharyya distance etc.). Nevertheless, DOS performs well
with wrapper FS criteria (classifier accuracy).

3 Hybrid Algorithms – Improving Feature
Selection Performance

Filter methods [26] for feature selection are general pre-
processing algorithms that do not rely on any knowledge of
the learning algorithm to be used. They are distinguished
by specific evaluation criteria including distance, informa-
tion, dependency. Since the filter methods apply indepen-
dent evaluation criteria without involving any learning al-
gorithm they are computationally efficient. Wrapper meth-
ods [26] require a predetermined learning algorithm instead
of an independent criterion for subset evaluation. They
search through the space of feature subsets using a learning
algorithm, calculate the estimated accuracy of the learn-
ing algorithm for each feature before it can be added to
or removed from the feature subset. It means, that learn-
ing algorithms are used to control the selection of feature
subsets which are consequently better suited to the prede-
termined learning algorithm. Due to the necessity to train
and evaluate the learning algorithm within the feature se-
lection process, the wrapper methods are more computa-
tionally expensive than the filter methods.

                 using 3-NN on independent data.
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The main advantage of filter methods is their speed
and ability to scale to large data sets. A good argument for
wrapper methods is that they tend to give superior perfor-
mance. Their time complexity, however, may become pro-
hibitive if problem dimensionality exceeds several dozen
features. Moreover, wrappers are more prone to feature
over-selection [34].

Hybrid FS algorithms can be defined easily to utilize
the advantages of both filters and wrappers ([10], [1]). In
the course of search, in each algorithm step the filter is used
to reduce the number of candidates to be evaluated in wrap-
per. The scheme can be applied in any sequential FS algo-
rithms (see Section 2) by replacing Definitions 1 and 2 by
Definitions 3 and 4 as follows. For sake of simplicity let
JF (.) denote the faster but for the given problem possibly
less appropriate filter criterion, JW (.) denote the slower but
more appropriate wrapper criterion. The hybridization co-
efficient, defining the proportion of feature subset evalua-
tions to be accomplished by wrapper means, is denoted by
λ ∈ [0, 1]. In the following d·e denotes value rounding.

Definition 3 For a given current feature set Xd and given
λ ∈ [0, 1], let Z+ be the set of candidate features

Z+ = {fi : fi ∈ Y\Xd; i = 1, . . . , max{1, dλ·|Y\Xd|e}}
(9)

such that

∀f, g ∈ Y \Xd, f ∈ Z+, g /∈ Z+ (10)

J+
F (Xd, f) ≥ J+

F (Xd, g) ,

where J+
F (Xd, f) denotes the pre-filtering criterion func-

tion used to evaluate the subset obtained by adding f
(f ∈ Y \Xd) to Xd. Let f+ be the feature such that

f+ = arg max
f∈Z+

J+
W (Xd, f) , (11)

where J+
W (Xd, f) denotes the main criterion function used

to evaluate the subset obtained by adding f (f ∈ Z+) to
Xd. Then we shall say that ADDH(Xd) is an operation of
adding feature f+ to the current set Xd to obtain set Xd+1

if

ADDH(Xd) ≡ Xd ∪ {f+} = Xd+1, Xd, Xd+1 ⊂ Y.
(12)

Definition 4 For a given current feature set Xd and given
λ ∈ [0, 1], let Z− be the set of candidate features

Z− = {fi : fi ∈ Xd; i = 1, . . . , max{1, dλ·|Xd|e}} (13)

such that

∀f, g ∈ Xd, f ∈ Z−, g /∈ Z− J−F (Xd, f) ≥ J−F (Xd, g) ,
(14)

where J−F (Xd, f) denotes the pre-filtering criterion func-
tion used to evaluate the subset obtained by removing f
(f ∈ Xd) from Xd. Let f− be the feature such that

f− = arg max
f∈Z−

J−W (Xd, f), (15)

where J−W (Xd, f) denotes the main criterion function used
to evaluate the subset obtained by removing f (f ∈ Z−)
from Xd. Then we shall say that RMVH(Xd) is an op-
eration of removing feature f− from the current set Xd to
obtain set Xd−1 if

RMVH(Xd) ≡ Xd \ {f−} = Xd−1, Xd, Xd−1 ⊂ Y.
(16)

Note that in standard sequential FS methods J+
F (·), J−F (·),

J+
W (·) and J−W (·) stand for

J+
F (Xd, f) = JF (Xd ∪ {f}) , (17)

J−F (Xd, f) = JF (Xd \ {f}) ,

J+
W (Xd, f) = JW (Xd ∪ {f}) ,

J−W (Xd, f) = JW (Xd \ {f}) .

The idea behind the proposed hybridization scheme is ap-
plicable in any of the sequential feature selection methods
discussed in Sections 2.3 to 2.7 and can be also expressed
in a simplified way as follows:

Operation ADDH(Xd) adds a feature to a working subset
of d features, Xd, to produce subset Xd+1, based on hy-
bridized evaluation of feature subset merit (for simplicity
denote p = |Y \Xd| and q = max{1, dλ · pe}):

1. Pre-filtering: For each candidate feature f+
i ∈ Y \

Xd, i = 1, . . . , p and the respective candidate subset
Xd∪{f+

i } compute the value ν+
i = JF (Xd∪{f+

i }).

2. Main evaluation: Keep only those q feature candi-
dates f+

ij
, j = 1, . . . , q, that yielded q highest ν+

ij

values. Evaluate the respective candidate subsets
Xd ∪ {f+

ij
} by computing µ+

j = JW (Xd ∪ {f+
ij
}),

j = 1, . . . , q.

3. Return Xd+1 = Xd ∪ {f+
ijmax

} where µ+
jmax

is the

highest among all µ+
j , j = 1, . . . , q values.

Operation RMVH(Xd) removes a feature from a working
subset of d features, Xd, to produce subset Xd−1, based on
hybridized evaluation of feature subset merit (for simplicity
denote r = |Xd| and s = max{1, dλ · re}):

1. Pre-filtering: For each candidate feature f−i ∈ Xd,
i = 1, . . . , r and the respective candidate subset Xd \
{f−i } compute the value ν−i = JF (Xd \ {f−i }).

2. Main evaluation: Keep only those s feature candi-
dates f−ij

, j = 1, . . . , s, that yielded s highest ν−ij

values. Evaluate the respective candidate subsets
Xd \ {f−ij

} by computing µ−j = JW (Xd \ {f−ij
}),

j = 1, . . . , s.

3. Return Xd−1 = Xd \ {f−ijmax
} where µ−jmax

is the

highest among all µ−j , j = 1, . . . , s values.
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Table 1. Performance of hybridized FS methods with Bhattacharyya distance used as pre-filtering criterion and 5-NN perfor-
mance as main criterion. Madelon data, 500-dim., 2 classes of 1000 and 1000 samples. 50% of data used for training by means

of 10-fold cross-validation, 50% for independent testing using 5-NN.

Hybridization coeff. λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
d-optimizing FS Method Dynamic Oscillating Search (∆ = 15)
FS result – criterion value 0.795 0.889 0.903 0.873 0.897 0.891 0.892 0.894 0.884 0.884 0.886
Independent accuracy 0.811 0.865 0.868 0.825 0.854 0.877 0.871 0.849 0.873 0.873 0.875
Determined subset size 8 27 19 19 19 18 23 13 13 13 16
Time (h:m) 0:01 6:20 14:18 8:33 17:50 18:34 13:47 4:49 3:14 3:23 9:13
d-parametrized FS Method Oscillating Search (BIF initialized, ∆ = 10), subset size set in all cases to d = 20
FS result – criterion value 0.812 0.874 0.887 0.891 0.879 0.902 0.891 0.899 0.889 0.891 0.884
Independent accuracy 0.806 0.859 0.869 0.853 0.855 0.864 0.856 0.853 0.857 0.86 0.858
Time (h:m) 0:09 6:25 1:10 2:18 4:05 6:44 9:06 14:16 10:32 10:17 12:57

When applied in sequential FS methods the described
hybridization mechanism has several implications: 1) it
makes possible to use wrapper based FS in considerably
higher dimensional problems as well as with larger sam-
ple sizes due to reduced number of wrapper computations
and consequent computational time savings, 2) it improves
resistance to over-fitting when the used wrapper criterion
tends to over-fit and the filter does not, and 3) for λ = 0
it reduces the number of wrapper criterion evaluations to
the absolute minimum of one evaluation in each algorithm
step. In this way it is possible to enable monotonic filter
criteria to be used in d-optimizing setting, what would oth-
erwise be impossible.

4 Experiments

We have conducted a series of experiments on data of
various characteristics. We include low-dimensional low
sample size speech data from British Telecom, 15-dim.,
2 classes of 212 and 55 samples, and wdbc data from
UCI Repository [33], 30-dim., 2 classes of 357 and 212
samples, moderate-dimensional high sample size waveform
data [33], 40-dim., first 2 classes of 1692 and 1653 samples,
as well as high-dimensional, high sample size data: made-
lon 500-dim., 2 classes of 1000 samples each form UCI
Repository [33] and musk data [33], 166-dim., 2 classes of
1017 and 5581 samples.

For each data set we compare feature selection re-
sults of the d-parametrized Oscillating Search (OS) and
the d-optimizing Dynamic Oscillating Search (DOS), the
two methods representing some of the most effective sub-
set search tools available. For OS the target subset size
d is set manually to a constant value to be comparable
to the d as yielded by DOS. In both cases the experi-
ment has been performed for various values of the hy-
bridization coefficient λ ranging from 0 to 1. In each hy-
brid algorithm the following feature selection criteria have
been combined: (normal) Bhattacharyya distance for pre-
filtering (filter criterion) and 5-Nearest Neighbor (5-NN)
10-fold cross-validated classification rate on validation data

for final feature selection (wrapper criterion). Each result-
ing feature subset has been eventually tested using 5-NN
on independent test data (50% of each dataset).

The results are collected in Tables 1 to 5. Note the
following phenomena observable across all tables: 1) hy-
bridization coefficient λ closer to 0 lead generally to lower
computational time while λ closer to 1 leads to higher com-
putational time, although there is no guarantee that lower-
ing λ reduces search time (for counter-example see, e.g.,
Table 1 for λ = 0.7 or Table 2 for λ = 0.4), 2) low λ val-
ues often lead to results performing equally or better than
pure wrapper results (λ = 1) on independent test data (see
esp. Table 2), 3) d-optimizing DOS tends to yield higher
criterion values than d-parametrized OS; in terms of the
resulting performance on independent data the difference
between DOS and OS shows much less notable and con-
sistent, although DOS still shows to be better performing
(compare the best achieved accuracy on independent data
over all λ values in each Table), 4) it is impossible to pre-
dict the λ value for which the resulting classifier perfor-
mance on independent data will be maximum (note in Ta-
ble 1 λ = 0.5 for DOS and 0.2 for OS, etc.). The same
holds for the maximum found criterion value (note in Ta-
ble 1 λ = 0.2 for DOS and 0.5 for OS).

5 Conclusion

Based on an overview of the framework of sequential
search methods we introduced the general scheme of defin-
ing hybridized versions of sequential feature selection algo-
rithms. The main reason for defining hybrid feature selec-
tion algorithms is the possibility to take advantage of two
different FS schemes, each of which being advantageous
in different situations. We show experimentally that in the
particular case of combining faster but weaker filter FS cri-
teria with slow but possibly more appropriate wrapper FS
criteria it is possible to achieve results comparable to that of
wrapper-based FS but in filter-like time. Moreover, in some
cases hybrid FS methods exhibit better ability to general-
ize than pure wrappers, i.e., they occassionally find feature
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Table 2. Performance of hybridized FS methods with Bhattacharyya distance used as pre-filtering criterion and 5-NN perfor-
mance as main criterion. Musk data, 166-dim., 2 classes of 1017 and 5581 samples. 50% of data used for training by means of

10-fold cross-validation, 50% for independent testing using 5-NN.

Hybridization coeff. λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
d-optimizing FS Method Dynamic Oscillating Search (∆ = 15)
FS result – criterion value 0.968 0.984 0.985 0.985 0.985 0.985 0.986 0.985 0.986 0.985 0.985
Independent accuracy 0.858 0.869 0.862 0.872 0.863 0.866 0.809 0.870 0.861 0.853 0.816
Determined subset size 7 7 9 14 16 17 18 7 16 12 12
Time (h:m) 0:05 2:00 6:24 16:03 22:26 25:30 37:59 11:56 48:11 29:09 40:58
d-parametrized FS Method Oscillating Search (BIF initialized, ∆ = 10), subset size set in all cases to d = 20
FS result – criterion value 0.958 0.978 0.984 0.983 0.985 0.985 0.984 0.985 0.986 0.986 0.986
Independent accuracy 0.872 0.873 0.864 0.855 0.858 0.875 0.868 0.864 0.853 0.846 0.841
Time (h:m) 1:07 4:27 33:03 10:52 62:13 32:09 47:20 70:11 62:45 65:30 31:11

subsets that yield better classifier accuracy on independent
test data.

The key advantage of evaluated hybrid methods –
considerably reduced search time when compared to wrap-
pers – effectively open new application fields for non-trivial
feature selection. Previously it was often perceived im-
possible to apply sequential search with wrapper criteria to
problems of higher dimensionality (roughly of hundreds of
features). In our experiments we show that hybridization
enables reasonable feature selection outcome for a 500-
dimensional problem; higher-dimensional problems can be
tackled as well, as the proportion between the number of
performed slow and fast (stronger and weaker) FS crite-
rion evaluation steps can be user-adjusted (by hybridization
coefficient λ). It has been shown that the behavior of hy-
brid algorithms is very often advantageous in the sense that
a considerable reduction of search time is often achieved
at the cost of only negligible (or zero) decrease of result-
ing criterion value. The only problem stemming from hy-
bridization is the necessity to choose a suitable value of
the hybridization coefficient λ, while there is no analyti-
cal way of doing this optimally. Nevertheless, the mean-
ing of λ on the scale from 0 to 1 is well understand-
able; lower values can be expected to yield results more
filter-like while higher values yield results more wrapper-
like. Values closer to 0 enable hybridized feature selection
in (considerably) higher-dimensional problems than values
closer to 1.

Remark: Some related source codes can be found at
http://ro.utia.cas.cz/dem.html.
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[14] P. Pudil, J. Novovičová, N. Choakjarernwanit, and
J. Kittler, Feature selection based on approximation of
class densities by finite mixtures of special type, Pattern
Recognition, vol. 28, 1389–1398, 1995.
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[34] Š. J. Raudys, Feature over-selection, in Structural,
Syntactic, and Statistical Pattern Recognition, vol. LNCS
4109. Berlin / Heidelberg, Germany: Springer-Verlag,
2006, 622–631.
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